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Role of Modeling Activities at DELC

• Modeling activities at DELC contribute to the Air Force
mission in multiple ways:

– Supports Airborne Laser (ABL) development.
» Explain data from laser module tests and provide information beyond

test diagnostics.
» Impact flight hardware development.

– Enhances AFRL/DELC experiment activities:
» Provides insight into the physical processes underlying the

experiment.
» Predicts quantities not measured by experiment diagnostics.
» Designing new experiments.
» Helps identify and evaluate new research pathways.

• The goal of the modeling effort is not to simply match
experiment data but to explain the data.



What is a COIL?
• The Chemical Oxygen-Iodine Laser is a laser that uses the electronic

state transition of the iodine atom:
I(2P1/2)→I(2P3/2)+hν
I(2P1/2)+hν→ I(2P3/2)+2hν

   to produce photons with a wavelength of 1.315 µm.
• Before I(2P1/2) appears, a complex series of processes in the COIL must

occur:
– Produce O2(1∆)

» Cl2+2HO2
-→ O2(1∆)+H2O2+2Cl

– Produce I atoms from I2

» O2(1∆)+I2→ O2(3Σ)+I2
*

» O2(1∆)+I2
*→ O2(3Σ)+2I(2P3/2)

– Produce I(2P1/2)
» O2(1∆)+I(2P3/2) → O2(3Σ)+I(2P1/2)



What is a COIL?

Diagram of the operation of a COIL.



Problem Description

• The ‘typical’ Challenge class modeling problem is to
mathematically describe the 3-D, chemically reacting,
photon emitting, viscous flow within chemical lasers.

– The resulting set of nonlinear partial differential equations (pde’s) are
beyond analytical solution and require numerical integration.

– These equations are closely coupled at the timescales of the dominant
physical processes, yet contain descriptions of processes that may vary
across a wide range of timescales.

– The physical domain in which the equations must be integrated is usually
geometrically complex.

– Simulation using numerical integration of this system requires solution
techniques capable of accurately integrating the equations while
maintaining numerical stability.



Solution Methodology

• Integrate the full, laminar 3-D Navier-Stokes equations
coupled to continuity equations for the species components
of the flow.

• Thermo-chemistry, multi-component molecular diffusion,
and power extraction models particular to chemical laser
analysis have been added to the codes.

• Both models in use at DELC are built upon commercial
computational fluid dynamic (CFD) codes.

– MINT from Scientific Research Associates
– GASP from AeroSoft, Inc.



GASP

• Conservative finite volume formulation of the Navier-Stokes and
species continuity equations.

• 3rd order, upwind-biased differencing of spatial derivatives.
• 1st order Euler implicit time integration.
• Jacobi inner iteration solution of matrices generated for implicit time

integration.
• Finite rate chemistry modeling.
• Conservative, multi-component diffusion modeling.
• Domain decomposition into coupled zones for multi-processor

execution.
– OpenMP message passing protocol used, limited to shared memory execution at this

time.

• Extensively validated for a variety of external and internal flow
problems.



MINT
• Conservative finite difference formulation of the Navier-Stokes and

species continuity equations.
• 2nd order, central differencing of spatial derivatives.
• 2nd order Euler implicit time integration.
• Alternating Direction Implicit (ADI) solution of implicit time

integration matrices.
• Finite rate chemistry modeling.
• Conservative, multi-component diffusion modeling.
• Geometric optics power extraction model.
• H2O condensation and H2O particle tracking.
• Outer loop parallelization of ADI scheme using MPI message passing

protocol for multi-processor execution.



Multicomponent Molecular Diffusion
Model

• Effective diffusion model used to compute diffusive fluxes
important at low Reynolds numbers.
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Stable Resonator Model for
Power Extraction

• Geometric optics stable resonator model solves ray trace
equations.

– Iterates intensity field with the gain field until round trip gain equal loss
conditions satisified.

– Mirror geometry consists of flat outcoupler and hemispherical reflector for
specified reflectivities and losses.

– Diffraction incorporated via input aperture loss.

INTENS IT Y: 1.0 E+03 5. 0E+03 9. 0E+0 3 1. 3E+0 4 1. 7E+ 04 2. 1E+ 04 2. 5E+ 04

MINT Stable Resonator Output



Gain Model

• Gain expression for I(2P1/2) to I(2P3/2) transition.
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Parallel Scaling Performance
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Parallel Scaling Performance
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Current Challenge Work

• Current efforts:
– Support ABL through 3-D simulation of the full laser module (FLM).

» Simulate supersonic recovery region.
» Develop ‘end to end’ 3-D model for the FLM.

• Simulate FLM tests to baseline the model.
• Use this model to ‘extend’ the FLM database beyond test diagnostic data and

extrapolate to run conditions not tested.

– Re-evaluate the Standard COIL Rate Package using the 3-D models.
» COIL rate package originally developed in 1987 using low order

methods in comparison to the present modeling capability.
» Determine the sensitivity of the 3-D model predictions to the

measured reaction rates that are input to the model.
» Use these sensitivities to recommend new reaction rate measurements.



Current Challenge Work

• Current Efforts:
– Support development of the recently demonstrated all gas phase iodine

laser (AGIL).

» AGIL generates I(2P1/2) via energy transfer from NCl(a1∆), a product
of a series of all gas phase chemical reactions.

• Important to the Air Force mission because of potential weight savings with respect
to COIL.

» Inefficient mixing of reactants has been identified as limiting system
performance in current hardware.

» 3-D CFD simulation is being used to examine the mixing issues and
indicate hardware modifications to alleviate the problem.



Results

• MINT simulation of ABL FLM supersonic diffuser.
• GASP simulation of RADICL experiment used to perform

COIL chemistry sensitivity analysis.
• GASP simulation of AGIL experiment hardware to help

identify mixing issues.
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ABL FLM Diffuser



2-D MINT Simulation of the ABL FLM Supersonic
Diffuser
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2-D MINT Simulation of the ABL FLM Supersonic
Diffuser
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2-D MINT Simulation of ABL FLM Diffuser
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Challenge Progress to Date

• ABL (with MINT code):
– 8 2-D FLM diffuser simulations at 4 separate back pressures, with and

without H2O condensation
– 4 3-D FLM diffuser simulations in progress at 4 separate back pressures.

• RADICL experiment (with GASP):
– 3-D with reduced 21 reaction, 10 species finite-rate chemistry model,

original thermo-chemical database, 3 separate grid resolutions.
– 3-D with reduced 21 reaction, 10 species finite-rate chemistry model,

improved property fits in thermo-chemical database , 2 separate grid
resolutions.

– 3-D with full 45 reaction, 16 species finite-rate chemistry model, improved
property fits in thermo-chemical database, 3 separate grid resolutions.



Challenge Progress to Date

• AGIL experiment simulations:
– 3-D simulation of He/HI injection into He/Cl flow, 1 reaction, 5 species

finite rate chemistry, single grid resolution.
– 3-D simulation of He/HI injection into He/Cl flow, 1 reaction, 5 species

finite rate chemistry, new AGIL hardware, in progress.
– 3-D simulation of He/HN3 injection into He/Cl flow, 3 reactions, 7 species

finite rate chemistry, new AGIL hardware, in progress.



Future Challenge Work

• Develop ‘end-to-end’ 3-D model for ABL FLM.
– Simulation will include mixing nozzle region, cavity, and diffuser.
– Will be baselined and validated against existing FLM test data.
– Will be used to fill in FLM test database with information not measured in

tests.
– Will be used to predict device performance for conditions outside of the

parameter space explored in FLM tests.

• Perform 3-D simulations of advanced COIL concepts.
– Simulate supersonic injection and ‘self-pumped’ mixing nozzle concepts.
– Results will be placed in ‘end-to-end’ model for prediction of full-scale

hardware performance.



Future Challenge Work

• Perform 3-D simulations of AFRL/DELC AGIL
experiment hardware.

– Impact design of upcoming ‘low power’ subsonic device experiments.
– Evaluate parameter space for future ‘high power’ supersonic device

experiments.

• Perform 3-D simulations of AFRL/DELC HF/DF
hardware.

– Support effort to develop understanding of the coupling between fluid
dynamics, mixing, and chemistry in the HF/DF chemical laser.

– Will impact ongoing Space Based Laser (SBL) development work.



Summary

• AFRL/DELC uses 3-D CFD models to simulate the non-
equilibrium, chemically reacting, photon emitting gas flow
in chemical lasers.

– The core CFD models are coupled to additional models for the chemical
laser physics:

» Finite-rate chemistry models.
» Conservative, multi-component diffusion model.
» Ray trace geometric optics model for near infrared laser radiation

field.
» H2O nucleation coupled to Lagrangian particle tracking.



Summary

• Challenge resources have been utilized to provide multiple
2-D and 3-D simulations to date:

– ABL FLM diffuser simulations:

» Effectively demonstrate the influence of H2O condensation on the
diffuser flow field.

– RADICL experiment simulations:
» Identify rate processes that need to be re-measured in experiments.

• Results will enhance the fidelity of ABL simulations.

– AGIL experiment simulations:
» Identified injectant penetration as possible explanation for mixing

issues in experiment hardware.
» Identified the presence of a recirculation bubble that would act as a

sink for Cl atoms.



Summary

• These Challenge simulations have already impacted ABL
and AFRL/DELC programs.

– Influenced the understanding of the ABL hardware.
» This information will affect the design and operating conditions of

future hardware.
– Influencing the design of upcoming AFRL/DELC AGIL experiments.

• Future work will increase the ability of the Challenge
simulations to impact these programs.


